Resources



Residual Solvent Analysis of Chemical Products by GC-FID with Hydrogen as a Carrier Gas

In this application note we will successfully validate a method for the analysis of residual solvents by GC-FID. A technical grade active ingredient (eugenol) will also be tested.


Analysis of Free and Total Glycerin in B-100 Biodiesel Methyl Esters (ASTM D6584)

The American Standard, ASTM D6584, is the standard test method commonly used for the quantitative determination of free and total glycerin content in Fatty Acid Methyl Esters (FAME), typically intended for pure biodiesel or as a blending component for domestic and diesel fuels. Total glycerol content is calculated from the results obtained. The method is suitable for FAME from rapeseed, sunflower and soybean oils.


Determination of Free Glycerol Content in Fatty Acid Methyl Esters (FAME) and Biodiesel According to EN-14106

Biodiesel is produced by transesterification of the parent oil or fat with an alcohol, usually methanol, in the presence of a catalyst, usually potassium hydroxide or sodium hydroxide, or, increasingly, alkoxides. The resulting product can contain not only the desired alkyl ester product but also unreacted starting material mono-, di- and triacylglycerides, residual alcohol and catalyst...


Determination of Total FAME and Linolenic Acid Methyl Esters in Biodiesel

For biodiesel to be used as a motor fuel or blended with petroleum diesel, it must conform to standard specifications (ASTM D 6751 or EN-14214). There are standard GC methods in use today to determine if biodiesel conforms to the standard specifications, one of which is EN-14103, used to determine the ester and linoleic acid methyl ester content...


ASTM D7423 - Analysis of Low Level Oxygenates (LOWOX) in Liquified Petroleum Gas (LPG)

ASTM D7423 is a standard test method for determination of oxygenates C2-C5 in hydrocarbon matrices. The SCION low level oxygenates analyzer is designed and optimised to quantify ppm and sub levels of ethers, alcohols, ketones and hydrocarbons in gas, liquid and LPG samples.


Determination of Fatty Acid Methyl Esters in Edible Argan Oil

There has been a growing demand for the analysis of oils, fats and fat containing food products especially surrounding the edible oils market. The most common analysis of such products are the determination of fatty acid methyl esters (including cis and trans isomers and omegas...


ASTM D7059 Methanol in Crude Oil Analysis According

The analysis of methanol in crude oil according to ASTM D7059: “Standard Test Method for Determination of Methanol in Crude Oils by Multidimensional Gas Chromatography.” In the production of crude oil, methanol is often added to prevent formation of hydrates (i.e., solid water-hydrocarbon structures) that block transportation via pipelines. However, methanol, as with most oxygenated components, will poison catalysts when the crude oil is converted into other products...


Analysis of 2,4-DNPH Derivatized Aldehydes by HPLC-DAD

Aldehydes are important compounds regularly use in the chemical industry. Sick house syndrome is a medical condition caused by poor air quality in enclosed indoor spaces and the presence of specific volatile organic compounds (VOCs) such as formaldehyde. It is vital that the level of formaldehyde and associated compounds are regularly measured and controlled especially in working environments in which formaldehyde is handled. SCION Instruments developed a method for the simultaneous analysis of seven DNPH (2,4- Dinitrophenylhydrazine) derivatised aldehydes plus one derivatised ketone.


Monitoring 57 Ozone Precursors in Ambient Air

Ozone, or trioxygen, is a gas made up of three oxygen atoms (O3 ). Naturally occurring in the stratosphere (upper atmosphere), ozone protects life on Earth from the Sun’s ultraviolet (UV) radiation. However, the tropospheric ozone formation occurs when nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic compounds (VOCs) react in the atmosphere in the presence of sunlight, specifically the UV spectrum. NOx, CO and VOCs are known as the ozone precursors. These ozone precursors cause a negative impact on plants and animals. Although VOCs are naturally emitted by biological organisms, NOx and VOCs are emitted during combustion of farming equipment and burning of biological materials. It is vital that the environment is not only protected from these ozone precursors but the level of ozone precursors are monitored. The United States Air Cleansing Act (1970) empowered the Environmental Protection Agency (EPA) to maintain air cleanliness and protect public health. EPA requires states in the US to identify problematic areas through comprehensive monitoring of NOx, CO and VOCs (known as Photochemical Assessment Monitoring Stations; PAMS). In the PAMS monitoring program, there are 57 specified target compounds, mainly non-methane hydrocarbons ranging from C2 to C12. This application note describes the process for monitoring these 57 ozone precursors in ambient air.


EPA 8260: Analysis of Volatile Organic Compounds by GC-MS

The United States Environmental Protection Agency (US EPA) was established in 1970 with the aim to protect human health and the environment. Since then environmental contamination has been at the forefront of government policy and regulation through US EPA methods for the analysis of environmental pollutants. EPA 8260 is the standard method for the analysis of volatile organic compounds (VOCs) in ground water and solid waste by purge and trap (P&T) gas chromatography with mass spectrometry (GC-MS). EPA 8260 is a comprehensive method with more than 100 VOCs in the target compound list.